4 resultados para bias

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimating the abundance of cetaceans from aerial survey data requires careful attention to survey design and analysis. Once an aerial observer perceives a marine mammal or group of marine mammals, he or she has only a few seconds to identify and enumerate the individuals sighted, as well as to determine the distance to the sighting and record this information. In line-transect survey analyses, it is assumed that the observer has correctly identified and enumerated the group or individual. We describe methods used to test this assumption and how survey data should be adjusted to account for observer errors. Harbor porpoises (Phocoena phocoena) were censused during aerial surveys in the summer of 1997 in Southeast Alaska (9844 km survey effort), in the summer of 1998 in the Gulf of Alaska (10,127 km), and in the summer of 1999 in the Bering Sea (7849 km). Sightings of harbor porpoise during a beluga whale (Phocoena phocoena) survey in 1998 (1355 km) provided data on harbor porpoise abundance in Cook Inlet for the Gulf of Alaska stock. Sightings by primary observers at side windows were compared to an independent observer at a belly window to estimate the probability of misidentification, underestimation of group size, and the probability that porpoise on the surface at the trackline were missed (perception bias, g(0)). There were 129, 96, and 201 sightings of harbor porpoises in the three stock areas, respectively. Both g(0) and effective strip width (the realized width of the survey track) depended on survey year, and g(0) also depended on the visibility reported by observers. Harbor porpoise abundance in 1997–99 was estimated at 11,146 animals for the Southeast Alaska stock, 31,046 animals for the Gulf of Alaska stock, and 48,515 animals for the Bering Sea stock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most fisheries select the size of fish to be caught (are size selective), and many factors, including gear, market demands, species distributions, fishery laws, and the behavior of both fishermen and fish, can contribute to that selectivity. Most fishing gear is size-selective and some, such as gill nets, are more so than others. The targeting behavior of fishermen is another key reason commercial and recreational fisheries tend to be size-selective. The more successful fishermen constantly seek areas and methods that yield larger or more profitable sizes of fish. Fishery regulations, especially size limits, produce size-selective harvests. Another factor with the potential to cause selectivity in a hook-and-line fishery is the different behavioral responses of fish to the bait or lure, whether the different responses arise among different fish sizes or between the sexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demersal groundfish densities were estimated by conducting a visual strip-transect survey via manned submersible on the continental shelf off Cape Flattery, Washington. The purpose of this study was to evaluate the statistical sampling power of the submersible survey as a tool to discriminate density differences between trawlable and untrawlable habitats. A geophysical map of the study area was prepared with side-scan sonar imagery, multibeam bathymetry data, and known locations of historical NMFS trawl survey events. Submersible transects were completed at randomly selected dive sites located in each habitat type. Significant differences in density between habitats were observed for lingcod (Ophiodon elongatus), yelloweye rockfish (Sebastes ruberrimus), and tiger rockfish (S. nigrocinctus) individually, and for “all rockfish” and “all flatfish” in the aggregate. Flatfish were more than ten times as abundant in the trawlable habitat samples than in the untrawlable samples, whereas rockfish as a group were over three times as abundant in the untrawlable habitat samples. Guidelines for sample sizes and implications for the estimation of the continental shelf trawl-survey habitat-bias are considered. We demonstrate an approach that can be used to establish sample size guidelines for future work by illustrating the interplay between statistical sampling power and 1) habitat specific-density differences, 2) variance of density differences, and 3) the proportion of untrawlable area in a habitat.